								R	REVISI	ONS			•							
LTR					D	ESCR	RIPTIO	N					DATE (YR-MO-DA)			DA)	APPROVED			
А	1 - C dime	Pages 4, 5, and 6, table I, change V_{CM} , CMRR, I_{B} , I_{IO} , V_{VIO} , C_{IN} , E_{N} , BGE, BGE/ Δ t, V_{IH} , I_{IH} , I_{IL} , V_{OH} , V_{OL} , FT, and I_{CC} . Delete T_{R} and P_{D} . Page 9, figure 1, case X, change A and A1 dimensions. Page 10, figure 1 - Continued, case Y, change overall package height and delete the dimensions for the distance between top of substrate and top of lid. Change vendor CAGE number. Editorial changes throughout.							91-01-25			Monica L. Poelking								
В	13, c	orrect	termir	able I, o al con throug	nection	BZE/ ns. Ina	Δt, BG activate	E/Δt, ed cas	and t _a . e Y (fla	. Page at pack	es 12 a age).	and		91-0	9-20		Monica L. Poelking			
С		device ıment.	types	03, 04	, and (CAGE	numb	er 507	'21. R	ewrite	entire			93-0	5-11		К	. A. Co	ottongi	m
REV SHEET REV	C	С	C	С	С	С														
SHEET	1																			
SHEET REV SHEET	15			18	19	C 20	C	C	C	C	C	С	C	C	C	С	С	С	C	
SHEET	15 JS				19		C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	C 9	C 10	C 11	C 12	C 13	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A	15 JS S	16	17	18 REV SHE	19	20) BY	1				5		7 SE EL	8 ECTR	9 ONICS	10	11 PLY C	12	13	C 12
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STANI MII	JS S DARE	16 DIZE RY	17	18 REV SHE PREI Doi CHE	19 / EET	20 D BY Osbor	1				5	6	7 SE EL	8 ECTR	9 ONICS	10 S SUP	11 PLY C	12	13	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STANI MII DR THIS DRAW FOR	DARE LITAF AWIN ING IS A	DIZE RY IG	17 D	18 REV SHE PREI Doi CHE Ray	19 / EET PAREE nald R.	20 D BY Osbor BY iin	1 rne			4 MIC	5 D	6	7 SE EL DA	8 ECTR AYTON	9 ONICS N, OHI	10 S SUP O 454	11 PLY 0	12	13 R	12
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STANI MII DR THIS DRAW FOR	JS JS S DARE LITAF AWIN ING IS A USE BY ARTMEN ENCIES	16 DIZE RY IG AVAILA ALL JTS OF TH	D BLE	18 REV SHE PREI Doi CHE Ra	19 / PARED P	20 D BY Osbor BY iin D BY Heckm	1 rne	2		MIC SYS	5 D ROC STEM	IRCU, HYB	7 SE EL DA	8 ECTRAYTON	9 ONICS N, OHI	10 S SUP IO 454 BIT D	11 PLY 0	12 EENTE	13	12

- 1. SCOPE
- 1.1 <u>Scope</u>. This drawing describes device requirements for class H hybrid microcircuits to be processed in accordance with MIL-H-38534.
 - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 Device type(s). The device type(s) shall identify the circuit function as follows:

Device type	Generic number	Circuit function
01	HS9403-8	12-bit data acquisition system, 8-channel differential input
02	HS9403-16	12-bit data acquisition system, 16-channel single-ended input
03	HDAS-8, HS9403-8-1	12-bit data acquisition system, 8-channel differential input
04	HDAS-16, HS9403-16-1	12-bit data acquisition system, 16-channel single-ended input

1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style	
Χ	See figure 1	62	quad package	
Υ	See figure 1	64	flat package	

1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-H-38534. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

1.3 Absolute maximum ratings.

Positive supply voltage range (V _{CC})	-0.5 V dc to +18 V dc
Negative supply voltage range (VFF)	+0.5 V dc to -18 V dc
Logic supply voltage range (V _{DD})	-0.5 V dc to +7 V dc
Analog input channels	±35 V dc <u>1</u> /
Digital inputs	-0.5 V dc to +7 V dc
Power dissipation (PD)	2 W
Thermal resistance ($\bar{\Theta}_{JC}$)	30° C/W
Thermal resistance (Θ_{JA})	45° C/W
Lead temperature (soldering, 10 seconds)	+300°C
Storage temperature range	-65°C to +150°C
Junction temperature (T _J)	+175°C

1.4 Recommended operating conditions.

Positive supply voltage range (V _{CC})	+14.5 V dc to +15.5 V dc
Negative supply voltage range (VFF)	-14.5 V dc to -15.5 V dc
Logic supply voltage range (VDD)	+4.5 V dc to +5.5 V dc
Ambient operating temperature range (T _A)	-55°C to +125°C

1/ ±20 V in power off condition.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification and standards</u>. Unless otherwise specified, the following specification and standards of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-H-38534 - Hybrid Microcircuits, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

MIL-STD-1835 - Microcircuit Case Outlines.

(Copies of the specification and standards required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-H-38534 and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-H-38534 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with figure 1 and 1.2.2 herein.
 - 3.2.2 Functional diagram. The functional diagram shall be as specified on figure 2.
 - 3.2.3 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 3.
 - 3.2.4 <u>Timing diagram</u>. The timing diagram shall be as specified on figure 4.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A		5962-88514
	REVISION LEVEL C	SHEET 3

		TABLE I. Electrical performance c	:haracteristics.				
Test	Symbol	Conditions 1/	Group A	Device	Lin	mits	Unit
		-55° C ≤ T _A ≤ +125° C unless otherwise specified	subgroups	type	Min	Max	<u> </u>
ANALOG INPUTS							
Input voltage range	V _{IN}	Unipolar <u>2/</u> unipolar V _{IN} = 0 to +5 V	1, 2, 3	All	0 0	10 10	mV V
		Bipolar Bipolar V _{IN} = -10 V to +10 V	1, 2, 3	All	0 0	±10 ±10	mV V
Common mode voltage range	V _{CM}	<u>3</u> /	1, 2, 3	All	±11		V
Common mode rejection	CMRR	G = 1 (10 kHz)	4, 5, 6	01, 02	-74		dB
ratio				03, 04	-65		1
		G = 1000 (60 Hz)	4, 5, 6	01, 02	-110]
				03, 04	-65		1
Input bias current	I _{IB}	<u>3</u> /	1	All		200	рА
			2, 3	All		20	nA
Input offset current	I _{IO}	<u>3</u> /	1	All		100	pA
			2, 3	All		15	nA
Input offset voltage	V _{IO}	Input = 0 V <u>3</u> /	1, 2, 3	All		5	mV
Input capacitance 3/	C _{IN}	Off channel	4	All		10	pF
		On channel	i	01		50]
				02		100	1
Voltage noise 3/	En	G = 1	4, 5, 6	All		150	μV(RMS)
		G = 1000	7			1.62	1
ACCURACY							
Nonlinearity	NL	End-point method 4/	1	All	-0.5	+0.5	LSB
			2, 3		-1	+1	
Differential nonlinearity	DNL	<u>4</u> /	1	All	-0.5	+0.5	LSB
			2, 3		-1	+1	

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 4

	TABI	LE I. Electrical performance characte	<u>ristics</u> - Contir	nued.			
Test	Symbol			Device	Lin	Limits	
				type	Min	Max	
ACCURACY - Continu	ued						
Unipolar offset error	UOE	0 to 10 V range (0000000000001)	1	All	-0.1	+0.1	% FSR
Unipolar offset error drift	ΔUOE/Δt	0 to 10 V range (0000000000001)	2, 3	All	-7	+7	ppm of FSR/°C
Bipolar zero error	BZE	-10 V to +10 V range (1000000000000)	1	All	-0.1	+0.1	% FSR
Bipolar zero error drift	BZE/Δt	-10 V to +10 V range (1000000000000)	2, 3	All	-2.5	+2.5	ppm of FSR/°C
Bipolar gain error	BGE	-10 V to +10 V range (000000000001) (111111111111)	1	All	-0.2	+0.2	%
Bipolar gain error drift	BGE/Δt	-10 V to +10 V range (0000000000001)	2, 3	01, 02	-20	+20	ppm/° C
		(111111111111)		03, 04	-30	+30	
Power supply rejection ratio		(All 0's and all 1's)					
TallO	+PSRR	$V_S = V_{CC} \pm 0.5 \text{ V}$ $V_S = V_{DD} \pm 0.5 \text{ V}$	1, 2, 3	All		.005 .005	%/%
	-PSRR	$V_S = V_{EE} \pm 0.5 V$.005]
	REFSRR	+10 V internal ref				.01	
Resolution	RES		1, 2, 3	All	12		bits
DIGITAL INPUTS							
Input voltage (high)	V _{IH}	Load = 40 µA	1, 2, 3	All	2.4	5.5	V
Input voltage (low)	V_{IL}	Load = -0.8 mA	1, 2, 3	All	0	0.8	V
Input current (high)	I _{IH}	V _{IN} = 2.0 V, logic "1"	1, 2, 3	All		40	μΑ
Input current (low)	I _{IL}	V _{IN} = 0 V, logic "0"	1, 2, 3	All	-0.8		mA
DIGITAL OUTPUTS							
Output voltage (high)	V _{OH}	I _{OH} = -40 μA (1 TTL load)	1, 2, 3	All	2.4		V
Output voltage (low)	V _{OL}	I _{OL} = +1.6 mA (1 TTL load)	1, 2, 3	All		0.4	V

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 5

TABLE I. <u>Electrical performance characteristics</u> - Continued.							
Test	Symbol	Conditions 1/	Group A	Device	Lir	nits	Unit
		-55° C ≤ T _A ≤ +125° C unless otherwise specified	subgroups	type	Min	Max	
DYNAMIC CHARACTER	ISTICS						
S/H acquisition time	t _a	10 V step settling to 0.01% FSR See figure 4	4, 5, 6	All		10	μs
A/D conversion time	t _c	See figure 4	4	All		10	μs
ı			5, 6			15	
Feedthrough	FT	Analog input = 20 Vpp at 1 kHz <u>3</u> /	4, 5, 6	All	01		%
Strobe command pulse width	t _{pw} /strobe	See figure 4 3/	9, 10, 11	All	40		ns
Setup time, digital inputs to strobe	t _s /strobe	See figure 4 3/	9, 10, 11	All	50		ns
Hold time, digital inputs from strobe	t _h /strobe	See figure 4 3/	9, 10, 11	All	50		ns
Enable three-state to valid	t _{t-s} /to _{-v}	See figure 4 3/	9, 10, 11	All	40		ns
Enable valid to three- state	t _{t-s} /to _{t-s}	See figure 4 3/	9, 10, 11	All	30		ns
POWER SUPPLIES	POWER SUPPLIES						
Quiescent supply current (positive)	l _{CC}	V _{CC} = +15.5 V, no load	1, 2, 3	All		+60	mA
Quiescent supply current (negative)	I _{EE}	V _{EE} = -15.5 V, no load	1, 2, 3	All		-68	mA
Quiescent supply current (logic)	I _{DD}	V _{DD} = +5.5 V, no load	1, 2, 3	All		+32	mA
Power dissipation	P _D		1, 2, 3	All		2	W

See footnotes on next page.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE

A

SIZE

A

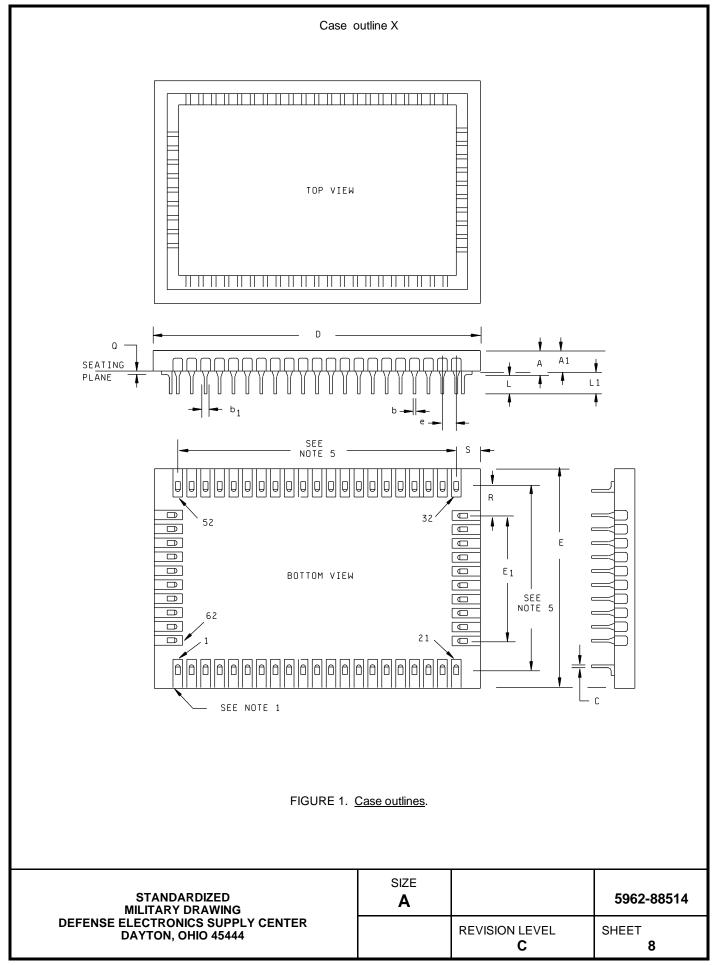
FREVISION LEVEL
C

SHEET
C

TABLE I. Electrical performance characteristics - Continued.

1/ Unless otherwise specified, the following conditions apply:

V_{CC} = +15 V dc, V_{EE} = -15 V dc, V_{DD} = +5 V dc
Input logic "0" = +0.8 V dc
Input logic "1" = +2.0 V dc
Output logic "0" = +0.4 V dc
Output logic "1" = +2.5 V dc
VFSR = 20 V


- 2/ Selectable with proper gain range.
- 3/ Parameter shall be tested as part of device initial characterization and after design and process changes.

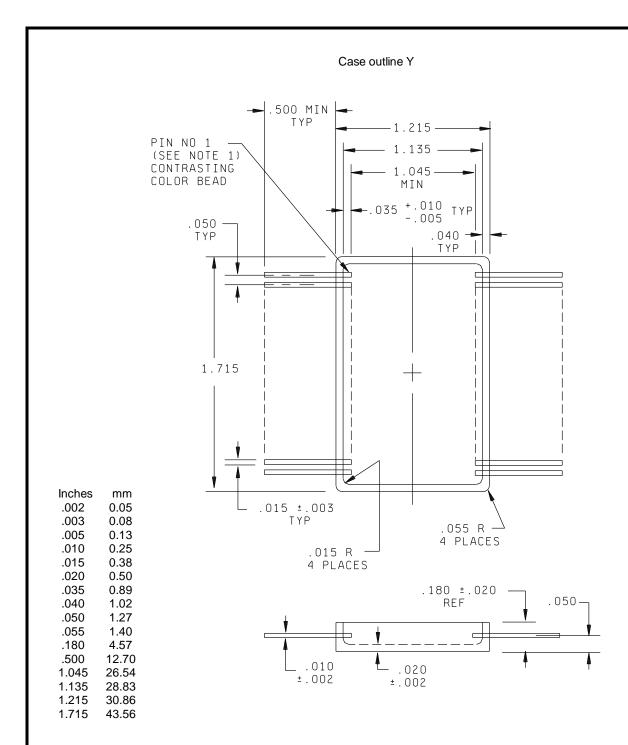
Parameter shall be guaranteed to limits specified in table I for all lots not specifically tested.

4/ Tested at major carries and sums only.

- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-H-38534. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in QML-38534 (see 6.6 herein).
- 3.6 <u>Manufacturer eligibility</u>. In addition to the general requirements of MIL-H-38534, the manufacturer of the part described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, produced on the certified line, for each device type listed herein. The data should also include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DESC-EC) upon request.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in QML-38534 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-H-38534 and the requirements herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-H-38534 shall be provided with each lot of microcircuits delivered to this drawing.
 - 4. QUALITY ASSURANCE PROVISIONS
 - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-H-38534.
 - 4.2 Screening. Screening shall be in accordance with MIL-H-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DESC-EC or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 7

Case outline X - Continued.

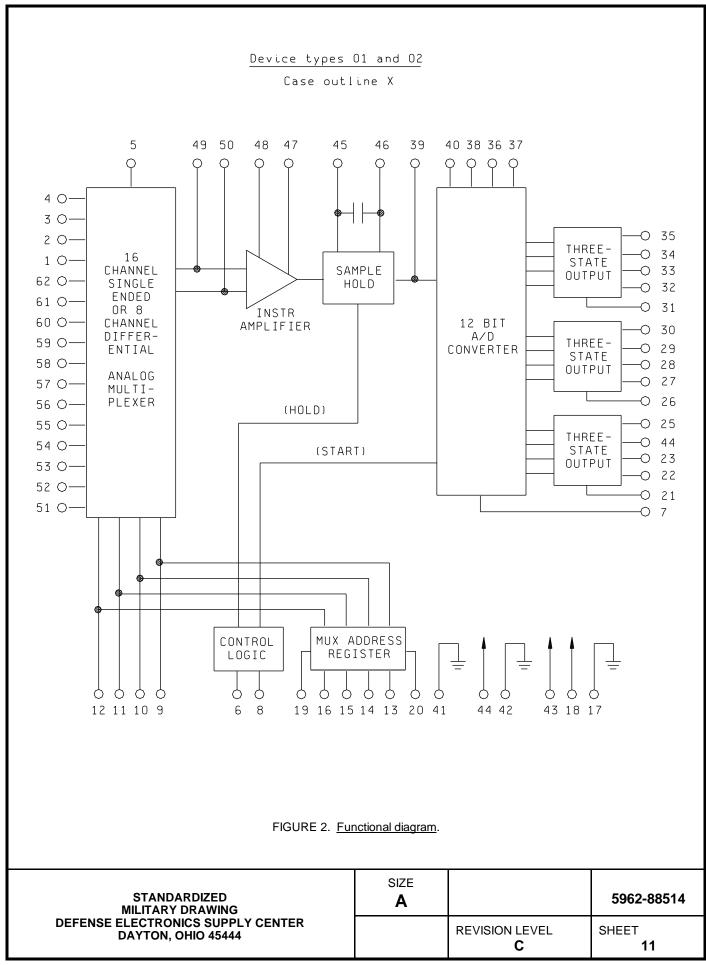

Symbol		Notes			
	Inches		Millimeters		
	Min	Max	Min	Max	
А	.170	.220	4.32	5.59	
A ₁	.145	.175	3.68	4.45	
b	.016	.021	0.41	0.53	10
С	.009	.015	0.23	0.38	10
D	2.227	2.323	57.84	59.00	5
Е	1.300	1.500	33.02	38.10	5
E ₁	1.09	1.11	27.7	28.2	9
е	.100BSC		2.54	BSC	7, 11
L	.160	.210	4.06	5.33	
L ₁	.185	.245	4.70	6.22	
Q	.025	.045	0.64	1.14	6
R	.130	.170	3.30	4.32	8
S	.085	.115	2.16	2.92	8

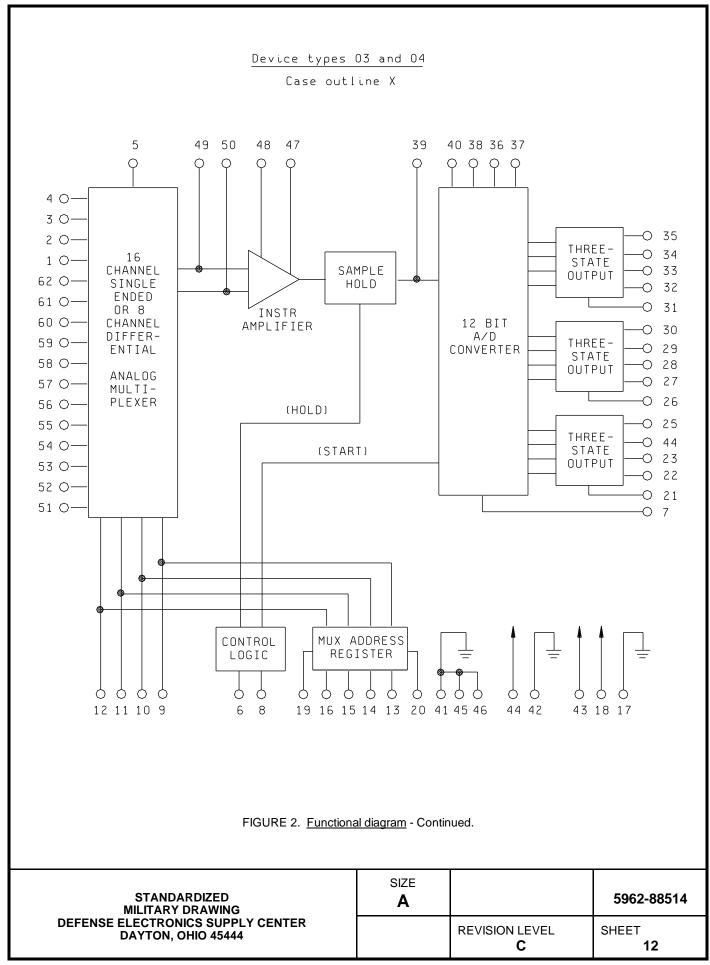
NOTES:

- 1. Pin 1 is identified by the ESD triangle(s) marked on top of package.
- 2. Dimensions are in inches.
- 3. Metric equivalents are given for general information only.
- 4. The manufacturer's identification shall not be used as pin one identification mark.
- 5. This dimension allows for off-center lid overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. The basic pin spacing is .100 (2.54 mm) between center lines. Each pin center line shall be located within ±.010 (0.25 mm) of its exact position to pins 1 and 52.
- 8. Applies to all four corners (leads 1, 21, 32, and 52).
- 9. E₁ shall be measured at the center line of the leads.
- 10. All leads: Increase maximum limit by .003 (0.08 mm) measured at the center of the flat, when finish A or B is applied.
- 11. Twenty-one spaces.
- 12. Leads in true position within .010R (0.25 mm) at MMC at seating plane.

FIGURE 1. Case outlines - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 9




NOTES:

- 1. Pin number one to be contrasting color bead from other beads.
- 2. Dimensions are in inches.
- 3. Metric equivalents are given for general information only.
 4. Hermeticity 1 x 10⁻⁸ cc/s minimum.

FIGURE 1. Case outlines - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 10

Device types	01 and 03	02 and 04
Case outline	Х	Х
Terminal number	Termina	l symbol
1	CH 3(+) IN	CH 3 IN
2	CH 2(+) IN	CH 2 IN
3	CH 1(+) IN	CH 1 IN
4	CH 0(+) IN	CH 0 IN
5	MUX ENABLE	MUX ENABLE
6	R DELAY	R DELAY
7	EOC	EOC
8	STROBE	STROBE
9	A8	A8
10	A4	A4
11	A2	A2
12	A1	A1
13	RA8	RA8
14	RA4	RA4
15	RA2	RA2
16	RA1	RA1
17	DIGITAL GND	DIGITAL GND
18	V_{DD}	V_{DD}
19	LOAD	LOAD
20	CLEAR	CLEAR
21	ENABLE (9-12)	ENABLE (9-12)
22	BIT 12 OUT (LSB)	BIT 12 OUT (LSB)
23	BIT 11 OUT	BIT 11 OUT
24	BIT 10 OUT	BIT 10 OUT
25	BIT 9 OUT	BIT 9 OUT
26	ENABLE (5-8)	ENABLE (5-8)
27	BIT 8 OUT	BIT 8 OUT
28	BIT 7 OUT	BIT 7 OUT
29	BIT 6 OUT	BIT 6 OUT
30	BIT 5 OUT	BIT 5 OUT
31	ENABLE (1-4)	ENABLE (1-4)

FIGURE 3. Terminal connections.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 13

Device types	01 and 03	02 and 04
Case outline	Х	Х
Terminal number	Termina	l symbol
32	BIT 4 OUT	BIT 4 OUT
33	BIT 3 OUT	BIT 3 OUT
34	BIT 2 OUT	BIT 2 OUT
35	BIT 1 OUT (MSB)	BIT 1 OUT (MSB)
36	GAIN ADJ	GAIN ADJ
37	OFFSET ADJ	OFFSET ADJ
38	BIPOLAR INPUT	BIPOLAR INPUT
39	SAMPLE/HOLD OUT	SAMPLE/HOLD OUT
40	+10 V REF OUT	+10 V REF OUT
41	ANALOG SIGNAL GND	ANALOG SIGNAL GND
42	ANALOG POWER GND	ANALOG POWER GND
43	V _{CC}	V _{CC}
44	V_{EE}	V_{EE}
45	<u>1</u> /	<u>1</u> /
46	<u>2</u> /	<u>2</u> /
47	R GAIN LOW	R GAIN LOW
48	R GAIN HIGH	R GAIN HIGH
49	AMP IN HIGH	AMP IN HIGH
50	AMP IN LOW	AMP IN LOW
51	CH 7 (-)IN	CH 15 IN
52	CH 6 (-)IN	CH 14 IN
53	CH 5 (-)IN	CH 13 IN
54	CH 4 (-)IN	CH 12 IN
55	CH 3 (-)IN	CH 11 IN
56	CH 2 (-)IN	CH 10 IN
57	CH 1 (-)IN	CH 9 IN
58	CH 0 (-)IN	CH 8 IN
59	CH 7 (+)IN	CH 7 IN
60	CH 6 (+)IN	CH 6 IN
61	CH 5 (+)IN	CH 5 IN
62	CH 4 (+)IN	CH 4 IN

NOTES:

- 1/ Pin 45 for device types 01 and 02 is C HOLD HIGH. Pin 45 for device types 03 and 04 is ANALOG SIGNAL GND. 2/ Pin 46 for device types 01 and 02 is C HOLD LOW. Pin 46 for device types 03 and 04 is ANALOG SIGNAL GND.

FIGURE 3. <u>Terminal connections</u> - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 14

Device type	02	Device type	02
Case outline	Υ	Case outline	Υ
Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	BIT 4	17	RA1
2	EN 1-4	18	RA2
3	BIT 5	19	RA4
4	BIT 6	20	RA8
5	BIT 7	21	A1
6	BIT 8	22	A2
7	EN 5-8	23	A4
8	BIT 9	24	A8
9	BIT 10	25	STROBE
10	BIT 11	26	EOC
11	BIT 12 (LSB)	27	R DELAY
12	— EN 9-12	28	MUX ENABLE
13	CLEAR	29	CH 0
14	LOAD	30	CH1
15	+5 V	31	CH2
16	DIGITAL GND	32	CH3

FIGURE 3. <u>Terminal connections</u> - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88514
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL C	SHEET 15

Device type	02	Device type	02
Case outline	Υ	Case outline	Υ
Terminal number	Terminal symbol	Terminal number	Terminal symbol
33	CH 4	49	C HOLD LOW
34	CH 5	50	C HOLD HIGH
35	CH 6	51	-15 V
36	CH 7	52	+15 V
37	CH 8	53	ANALOG POWER GND
38	CH 9	54	ANALOG POWER GND
39	CH 10	55	ANALOG SIGNAL GND
40	CH 11	56	ANALOG SIGNAL GND
41	CH 12	57	+10 V REF OUT
42	CH 13	58	S/H OUTPUT
43	CH 14	59	OFFSET ADJUST
44	CH 15	60	BIPOLAR INPUT
45	AMP IN LOW	61	GAIN ADJUST
46	AM IN HIGH	62	BIT 1 (MSB)
47	R GAIN HIGH	63	BIT 2
48	R GAIN LOW	64	BIT 3

FIGURE 3. <u>Terminal connections</u> - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88514
		REVISION LEVEL C	SHEET 16

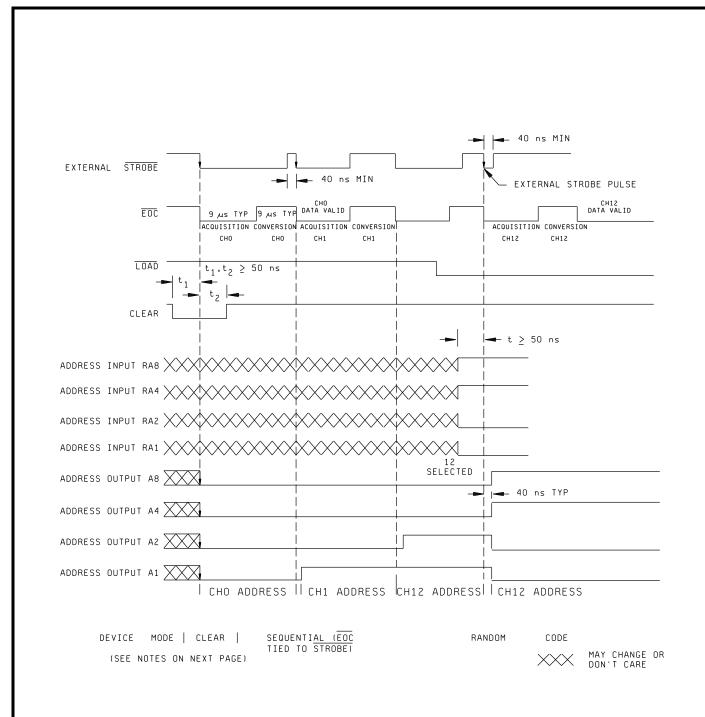


FIGURE 4. Timing diagram.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88514
		REVISION LEVEL C	SHEET 17

NOTES:

- 1. STROBE "H" or "L" initiates acquisition and conversion of analog signal.
- 2. EOC "H" indicates conversion in process. "L" indicates conversion complete.
- LOAD "L" will allow random address mode. Acquisition and conversion will be
 accomplished on channel selected at address inputs. "H" will cause
 sequential address mode. Acquisition and conversion will be accomplished
 on analog input channels in sequence. LOAD "L" will be initiated on falling
 transition of STROBE pulse.
- CLEAR "H" prevents STROBE pulse from causing address change.
 "L" allows next STROBE pulse to reset MUX ADDRESS to CHO overriding LOAD command.
- 5. When the EOC goes "H" indicating that an A/D conversion has begun, the MSB goes "L" and all other <u>bits go "H"</u>. Output bits are set to their final state on succeeding falling STROBE pulse.
- 6. Conversion time is defined as the time EOC is "H".
- 7. Once an acquisition and conversion cycle is begun, it cannot be stopped by applying another STROBE pulse.
- 8. Output data will be valid 40 ns after STROBE and EOC have returned "L". Parallel output data at the BIT outputs will remain valid and the EOC "L" until 10 ns after another acquisition and conversion cycle is started.
- 9. When the Data Acquisition System is initially "powered-up", it may come on at any point in the cycle. Disregard the first output indications.

FIGURE 4. Timing diagram - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88514
		REVISION LEVEL C	SHEET 18

TABLE II. Electrical test requirements.

MIL-H-38534 test requirements	Subgroups (in accordance with MIL-H-38534, group A test table)
Interim electrical parameters	
Final electrical test parameters	1*, 2, 3, 4, 9
Group A test requirements	1, 2, 3, 4, 5, 6, 9, 10, 11
Group C end-point electrical parameters	1, 2, 3

^{*} PDA applies to subgroup 1.

- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-H-38534 and as specified herein.
 - 4.3.1 Group A inspection. Group A inspection shall be in accordance with MIL-H-38534 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7 and 8 shall be omitted.
 - 4.3.2 Group B inspection. Group B inspection shall be in accordance with MIL-H-38534.
 - 4.3.3 Group C inspection. Group C inspection shall be in accordance with MIL-H-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DESC-EC or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - 4.3.4 Group D inspection. Group D inspection shall be in accordance with MIL-H-38534.
 - 5. PACKAGING
 - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-H-38534.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88514
		REVISION LEVEL C	SHEET 19

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-ECT, Dayton, Ohio 45444, or telephone (513) 296-5373.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in QML-38534. Additional sources will be added to QML-38534 as they become available. The vendors listed in QML-38534 have agreed to this drawing and a certificate of compliance (see 3.7 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A		5962-88514
	REVISION LEVEL C	SHEET 20

STANDARDIZED MILITARY DRAWING SOURCE APPROVAL BULLETIN

DATE: 93-05-11

Approved sources of supply for SMD 5962-88514 are listed below for immediate acquisition only and shall be added to QML-38534 during the next revision. QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DESC-ECT. This bulletin is superseded by the next dated revision of QML-38534.

Standardized military drawing PIN	Vendor CAGE number	Vendor similar PIN <u>1</u> /
5962-8851401XX	33256	HS9403B-8
5962-8851402XX	33256	HS9403B-16
5962-8851402YX <u>2</u> /		HS9403B-16FP
5962-8851403XX	50721 33256	HDAS-8/883 HS9403B-8-1
5962-8851404XX	50721 33256	HDAS-16/883 HS9403B-16-1

- 1/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 2/ Not available from QML-38534 source.

Vendor CAGE number	Vendor name <u>and address</u>
33256	Sipex, Hybrid Systems Division 22 Linnell Circle Suburban Industrial Park Billerica, MA 01821-3985
50721	Datel, Incorporated 11 Cabot Boulevard Mansfield, MA 02048-1194

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.